Высокотемпературная переработка отходов. Плазменные источники энергии (часть 3)

часть 2

Воздействие на слой токсичных отходов ударной плазменной струи

В 1990-х гг. фирма MGC Moser — Glaser (Швейцария) разработала и внедрила в г. Мюттенц установку высокотемпературного обезвреживания опасных отходов мощностью 1 т/ч (рис. 3). Технология получила название «Плазмокс»[4]. Центральным элементом установки является центрифуга с установленной в ней плазменной горелкой.

Рис. 3. Установка высокотемпературного обезвреживания опасных отходовОтходы в бочках подаются питателем в медленно вращающуюся водоохлаждаемую центрифугу, где распределяются на поду печи. Плазменная горелка постоянного тока мощностью 1,2 МВт нагревает материал и разрушает токсичные органические вещества. На поду образуется расплав минеральных компонентов с температурой около 1 600 °С. Термическая деструкция органических компонентов осуществляется главной плазменной горелкой. Образующиеся газы через пережим, в котором устроена еще одна горячая зона, с помощью второй плазменной горелки мощностью 0,3 МВт поступают в окислительную камеру, где находятся в течение 2 с при 1 200 °С.

Технология и установка плазмохимического уничтожения ПХБ-содержащих конденсаторов предложена американской фирмой Retech Systems LLC. Плазменно-дуговая центробежная установка (Plasma Arc Centrifugal Treatment System, «РАСТ-8»; цифра 8 соответствует диаметру центрифуги в футах; 1 фут = 0,3048 м), разрабатывалась фирмой с 1985 г. [5].

ПХБ-содержащие конденсаторы измельчаются в специальном устройстве и шнековым питателем подаются в первичную камеру переработки. В реакционную зону первичной камеры подается кислород (воздух) и отходы, на которые воздействует поток плазмы из электродугового плазмотрона. При высокой температуре в первичной камере переработки (температура в реакционной зоне до 1 300 °C) происходит деструкция ПХБ (пиролиз и сжигание) и плавление неорганических компонентов отходов. В результате образуются газообразные отходы, направляемые на дальнейшую переработку, и шлак.

Рис. 4. Плазменная печь фирмы «EUROPLASMA» для переработки токсичной золы МСЗПри вращении центрифуги происходит равномерный прогрев и перемешивание отходов и шлакового расплава, благодаря чему достигается высокая степень деструкции ПХБ и других токсичных компонентов отходов. В установке «РАСТ-8» используется оригинальная система формирования факела плазмы с использованием водоохлаждаемых электродов.

Газообразные отходы поступают во вторичную камеру переработки. Все газы, выходящие из первичной камеры, должны выдерживаться в этой камере при температуре не ниже 980 °С не менее 2 с при концентрации кислорода не менее 6 %.

Технические характеристики установки «РАСТ-8» следующие: мощность — 1 МВт. температура в зоне плазменной дуги — 10 000-20 000 °С, температура в реакционной зоне 1 000-1 300 °С, производительность по конденсаторам — 300-500 кг/ч, степень деструкции — 99,9999 %, количество твердых отходов на тонну перерабатываемых конденсаторов -0,4 т.

Упрощенным вариантом «Плазмокс» и «РАСТ-8» без установки центрифуги является плавильная печь фирмы Europlasma (г. Бордо, Франция) для переработки токсичной золы МСЗ (рис. 4). Мощность внедренных этой фирмой установок (во Франции, Японии и других странах) составляет от 6 до 41 т/сут. Нелетучие минеральные компоненты, в том числе соли тяжелых металлов, извлекаются из печи в виде расплава (вторичного продукта), а возгоны летучих веществ (кадмий, ртуть, свинец) после системы сорбции и улавливания собираются для последующего концентрирования, утилизации или захоронения.

Рис. 5. Плазменная печь для обезвреживания медикобиологических отходовСпециалистами Института тепло-и массообмена им. А. В. Лыкова и ООО «Плазмактор» (г. Минск, Беларусь) разработана, изготовлена и испытана плазменная камерная печь периодического действия мощностью до 50 кВт и производительностью 20-30 кг/ч, показанная на рис. 5 [6]. Печь предназначена для обезвреживания сравнительно небольших объемов медицинских и биологических отходов. После загрузки отходов в количестве примерно 10-15 кг и включения плазмотрона цикл их переработки (сжигания) составляет примерно 10 мин и зависит от состава отходов. После завершения цикла работы плазмотрон выключается, и печь переходит в режим остывания и разгрузки шлака. Суммарное время реализации всех стадий составляет около 30 мин, после чего печь готова к следующей загрузке и включению.

Рис. 6. Технологическая схема плазменной установки ЗАО «Плазма Тест» для обезвреживания медицинских отходовПлазменная установка переработки инфицированных медицинских отходов была разработана и спроектирована специалистами ЗАО «Плазма Тест» и построена на территории Московской городской инфекционной клинической больницы № 1 [7] [8]. Принципиальная технологическая схема установки приведена на рис. 6. Основу оборудования составляет двухкамерная кессонная металлургическая печь с ванной расплава шлака и металла и плазмотроном на боковой стенке, обеспечивающим температурный уровень от 2 000 до 5 000 °С. Максимальная проектная пропускная способность по отходам — 60 кг/ч (500 т в год). По ряду технических и экономических факторов указанная установка не была введена в постоянную эксплуатацию.

В целом рассмотренная технология обработки неподвижного слоя токсичных отходов ударной плазменной струей характеризуется низкой эффективностью тепло- и массообмена. Существенное усложнение установки за счет встроенной центрифуги для перемешивания расплава на поду печи кардинально не повышает эколого-технологические параметры процесса.

Далее
часть 4
часть 5

И. М. Бернадинер,
Московский энергетический институт (технический университет),
М. Н. Бернадинер, ОАО «НПО «Техэнергохимпром»
Источник: журнал «Твердые Бытовые Отходы» № 5 2011, раздел «Технологии»

При использовании материала/любой его части ссылка на авторство и сайт (www.zaobt.ru) обязательна


Литература

1. Бернадинер М. Н., Шурыгин А. П. Огневая переработка и обезвреживание промышленных отходов. — М.: Химия, 1990. — 304 с.

2. Способ утилизации жидких отходов. Патент РФ, №2353857, опубликовано 27.04.2009. Бюллетень №12.

3. Плазмохимическая переработка отходов хлорорганических производств /А. М. Тухватуллин [и др.] // Химическая промышленность. -1986. -№9.

4. G. Ondrey, К. Fouhy. Plasma arcs sputter new waste // Chemical engineering. — 1991. — December. — S. 32-35.

5. Перспективы плазмохимического уничтожения ПХБ-содержащих конденсаторов и других токсичных отходов / А. П. Цыганков [и др.] // Экология производства. — 2004. -№ 5. — С. 75-79.

6. Моссэ А. Л., Горбунов А. В., Савчин В. В. Электродуговые плазменные устройства для переработки и уничтожения токсичных отходов: материалы 4-го Международного симпозиума по теоретической и прикладной плазмохимии II Ивановский государственный технологический университет, 13-18 мая 2005 г.

7. Гонопольский А. М., Федоров О. Л. Обезвреживание отходов медицинских учреждений в герметичной плазменной печи // Чистый город. -1999.-№ 1(5) — С. 28-31.

8. Опыт внедрения системы сбора, транспортировки и плазменной переработки медицинских отходов (на примере Московской городской инфекционной клинической больницы №1)/А. М. Гонопольский [и др.] I/ Чистый город. — 1999. — № 3 (7). -С. 16-20.

9. Способ и установка для переработки радиоактивных отходов. Патент РФ, № 2320038, опубликовано 20.03.2008. Бюллетень № 8.

10. Плазменные технологии: расширение возможности переработки отходов: материалы Международной конференции «Стратегия безопасности использования атомной энергии — прошлое, настоящее и будущее» / И. И. Кадыров [и др.]. — СПб. — 25-29 сентября 2006 г.

11. Моссэ А. Л., Савчин В. В. Плазмотермическая обработка токсичных отходов II Твердые бытовые отходы. — 2006. — № 12. — С. 22-24.

12. Савчин В. В., Моссэ А. Л. Разработка и исследование плазменной шахтной печи для утилизации радиоактивных отходов: материалы 5-го Международного симпозиума по теоретической и прикладной плазмохимии // Ивановский государственный технологический университет, 3-8 сентября 2008 г.

13. Установка для плазменной газификации различных видов отходов: теплоэнергетика высоких температур / А. Н. Братцев [и др.]. — 2006. -Т. 44. -№6.~ С. 832-837.

14. Переработка твердых отходов методом плазменной газификации: вода и экология: проблемы и решения /А.Н. Братцев [и др.]. — 2006. -№4.~ С. 69-73.

15. Петров С. В. Плазменная газификация отходов: мир техники и технологии. — 2009. — № 7. — С. 54-55.

16. Бернадинер И. М. Диоксины и другие токсиканты при высокотемпературной переработке и обезвреживании отходов. — М.: Издательский дом МЭИ, 2007. — 48 с.

17. Савчин В. В., Моссэ А. Л. Плазменные методы в технологии переработки РАО: материалы VМеждународной конференции «Сотрудничество для решения проблемы отходов». — Харьков, 2008. -С. 50-52.

Return to Top ▲Return to Top ▲