Высокотемпературная переработка отходов. Плазменные источники энергии (часть 4)

… часть 1
часть 2
часть 3

В последние годы в зарубежной и отечественной технической литературе появилось огромное количество публикаций в основном рекламного характера по использованию плазменных источников энергии в установках высокотемпературной переработки различных органических отходов. Рассмотрим основные варианты использования плазменных источников энергии в технологиях высокотемпературной переработки и обезвреживания твердых бытовых, промышленных и медицинских отходов.

Термическая обработка отходов в плотном фильтруемом слое

Наибольшее распространение в практике пиролиза и газификации твердых бытовых, промышленных и медицинских отходов нашли вертикальные шахтные печи. Классическим примером противоточной шахтной печи для пиролиза твердых отходов является реактор, разработанный ГУП МосНПО «Радон» [9], представленный на рис. 1.

Общий вид технологического комплекса по переработке ТБО в ИзраилеУпаковки с отходами поступают через узел загрузки в верхние слои шахты и, опускаясь под Рис. 1. Плазменная шахтная печь для переработки твердых радиоактивных отходовдействием силы тяжести, нагреваются за счет теплоты газов, движущихся вверх им навстречу.

Источником энергии служат дуговые плазмотроны, установленные в подовой части печи над ванной. В качестве плазмообразующего газа используется воздух. Применение воздушных плазмотронов достаточной мощности позволило отказаться от дополнительного топлива. В верхней части печи отходы проходят стадии сушки и пиролиза, сопровождающиеся интенсивным газовыделением.

В высокотемпературной зоне шахтной печи в нижних слоях отходов происходит возгонка летучих соединений. В то же время в среднем и верхнем уровнях шахты печи, в зоне относительно низких температур, эти соединения концентрируются и сорбируются в слое отходов. Коксовый остаток в значительной степени выжигается, а минеральные компоненты плавятся и поступают в зону накопления расплава.

Технологическая схема опытнопромышленной установки «Плутон», разработанной ГУП МосНПО «Радон» для обезвреживания радиоактивных отходов, с агрегатной нагрузкой 200-250 кг/ч [10] приведена на рис. 2. Эта установка позволяет перерабатывать смешанные твердые отходы, содержащие не только горючие компоненты (древесину, бумагу, ветошь, пластики), но и негорючие (металл, стекло, грунт, изоляционные материалы).

Температура отходящих газов на выходе из шахтной печи не превышала 250-300 °С, пирогаз (помимо горючих газов) содержал смолистые вещества и аэрозоли сажи и золы, которые подвергались обработке в многоступенчатой системе пылегазоо-чистки. Температура шлакового расплава в ванне печи достигала 1 600-1 800 °С. После охлаждения был получен продукт, пригодный для безопасного хранения.

Рис. 2. Технологическая схема установки «Плутон»На основе длительного цикла научно-исследовательских работ, выполненных на установке «Плутон», была осуществлена разработка демонстрационного комплекса по переработке ТБО в Израиле с проектной нагрузкой 500 кг/ч (см. фото), введенного в опытную эксплуатацию в 2007 г. по контракту между
РНЦ «Курчатовский институт» и израильской компанией EER (Environmental Energy Resources). Проектноконструкторские работы были выполнены ООО «ВАМИ» (г. Санкт-Петербург) при участии ОАО «ВНИИАМ» и ОАО «НПО Техэнер-гохимпром».

Шахтная печь для термической переработки (твердых бытовых, промышленных, медицинских и биологических) отходов с агрегатной нагрузкой до 200 кг/ч разработана Институтом тепло- и массообмена им. А. В. Лыкова совместно с другими организациями Республики Беларусь [11][12]. В качестве плазменных горе-лочных устройств применяются элек-тродуговые плазмотроны постоянного и переменного тока.

Параметры работы плазмотрона ПДС-50/3-03

Режим Сила тока, а Напряжение, в Расход газа (воздух), г/с Кпд, % Энтальпия плазменной струи, мдж/кг Температура плазменной струи, к
I 120 320 3,6 58 6,5 3 700
II 130 340 4,5 59 6,1 3 550
III 110 340 4,0 60 5,9 3 500

Шахтный процесс переработки дал возможность реализовать режим противотока при нагревании и термической обработке отходов, а охлаждение и фильтрацию отходящих газов — непосредственно в самом слое. Для этого в состав шихты добавляли органический фильтрующий материал — мелкие древесные опилки.

Далее…
часть 5

И. М. Бернадинер,
Московский энергетический институт (технический университет),
М. Н. Бернадинер, ОАО «НПО «Техэнергохимпром»
Источник: журнал «Твердые Бытовые Отходы» № 5 2011, раздел «Технологии»

При использовании материала/любой его части ссылка на авторство и сайт (www.zaobt.ru) обязательна


Литература

1. Бернадинер М. Н., Шурыгин А. П. Огневая переработка и обезвреживание промышленных отходов. — М.: Химия, 1990. — 304 с.

2. Способ утилизации жидких отходов. Патент РФ, №2353857, опубликовано 27.04.2009. Бюллетень №12.

3. Плазмохимическая переработка отходов хлорорганических производств /А. М. Тухватуллин [и др.] // Химическая промышленность. -1986. -№9.

4. G. Ondrey, К. Fouhy. Plasma arcs sputter new waste // Chemical engineering. — 1991. — December. — S. 32-35.

5. Перспективы плазмохимического уничтожения ПХБ-содержащих конденсаторов и других токсичных отходов / А. П. Цыганков [и др.] // Экология производства. — 2004. -№ 5. — С. 75-79.

6. Моссэ А. Л., Горбунов А. В., Савчин В. В. Электродуговые плазменные устройства для переработки и уничтожения токсичных отходов: материалы 4-го Международного симпозиума по теоретической и прикладной плазмохимии II Ивановский государственный технологический университет, 13-18 мая 2005 г.

7. Гонопольский А. М., Федоров О. Л. Обезвреживание отходов медицинских учреждений в герметичной плазменной печи // Чистый город. -1999.-№ 1(5) — С. 28-31.

8. Опыт внедрения системы сбора, транспортировки и плазменной переработки медицинских отходов (на примере Московской городской инфекционной клинической больницы №1)/А. М. Гонопольский [и др.] I/ Чистый город. — 1999. — № 3 (7). -С. 16-20.

9. Способ и установка для переработки радиоактивных отходов. Патент РФ, № 2320038, опубликовано 20.03.2008. Бюллетень № 8.

10. Плазменные технологии: расширение возможности переработки отходов: материалы Международной конференции «Стратегия безопасности использования атомной энергии — прошлое, настоящее и будущее» / И. И. Кадыров [и др.]. — СПб. — 25-29 сентября 2006 г.

11. Моссэ А. Л., Савчин В. В. Плазмотермическая обработка токсичных отходов II Твердые бытовые отходы. — 2006. — № 12. — С. 22-24.

12. Савчин В. В., Моссэ А. Л. Разработка и исследование плазменной шахтной печи для утилизации радиоактивных отходов: материалы 5-го Международного симпозиума по теоретической и прикладной плазмохимии // Ивановский государственный технологический университет, 3-8 сентября 2008 г.

13. Установка для плазменной газификации различных видов отходов: теплоэнергетика высоких температур / А. Н. Братцев [и др.]. — 2006. -Т. 44. -№6.~ С. 832-837.

14. Переработка твердых отходов методом плазменной газификации: вода и экология: проблемы и решения /А. Н. Братцев [и др.]. — 2006. -№4.~ С. 69-73.

15. Петров С. В. Плазменная газификация отходов: мир техники и технологии. — 2009. — № 7. — С. 54-55.

16. Бернадинер И. М. Диоксины и другие токсиканты при высокотемпературной переработке и обезвреживании отходов. — М.: Издательский дом МЭИ, 2007. — 48 с.

17. Савчин В. В., Моссэ А. Л. Плазменные методы в технологии переработки РАО: материалы VМеждународной конференции «Сотрудничество для решения проблемы отходов». — Харьков, 2008. -С. 50-52.

Return to Top ▲Return to Top ▲