Очистка воды от дейтерия: лёгкая вода без тяжёлых

капитальных затрат

Леонтьев В.С., Ладыгин К.В., Стомпель С.И.

Промышленная Группа «Безопасные Технологии»

Поговорим о современных технологиях очистки воды от тяжёлых изотопов водорода и кислорода, которые, согласно научным данным, далеко не безвредны для организма человека. И выясним, зачем нам с вами необходима лёгкая вода, как она влияет на здоровье и как можно её получить с наименьшими затратами, используя колонное оборудование, оснащённое регулярными насадками «Шеврон», разработанными ПГ «Безопасные Технологии».

акой бывает вода? Такой вопрос может вызвать недоумение. Холодная или горячая, солёная или пресная, грязная или чистая – на этом ряд определений обычно иссякает. Тот, кто интересуется вопросами термоядерных реакций, вспомнит про тяжёлую воду. Однако немногие догадаются, что наряду с тяжёлой существует и вода лёгкая. И будут совершенно правы, потому что лёгкая вода не только существует, но и все больше переходит из сферы интересов науки в реальную жизнь.

УНИКАЛЬНЫЕ СВОЙСТВА ЛЁГКОЙ ВОДЫ И ЕЁ ВЛИЯНИЕ НА ОРГАНИЗМ ЧЕЛОВЕКА

В чём же причина нарастающей популярности лёгкой воды? Дело в том, что это вещество обладает удивительными свойствами. Как можно догадаться из названия, лёгкая, или протиевая вода состоит из молекул $^1{\rm H}_2{}^{16}{\rm O}$, а именно из наиболее лёгких изотопов водорода и кислорода.

Но какое отношение это имеет к человеку? Установлено, что существует прямая связь изотопного состава организма человека с составом потребляемой воды и пищи. Например, среди других элем ентов в организме человека дейтерий (²H), содержащий два протона в ядре атома, по распространённости располагается сразу за натрием. Содержание дейтерия в плазме крови в 4 раза больше, чем калия, в 6 раз больше, чем кальция, в 10 раз больше, чем магния и намного больше содержания таких важнейших микроэлементов, как фтор, железо, йод, медь, марганец и кобальт. Человеческий организм «предпочитает» лёгкие изотопы элементов, поэтому мы на 99,4% «построены» из четырёх лёгких изотопов атомов ¹²С, ¹⁶О, ¹Н, ¹⁴N. При ослаблении защитных сил организма в результате старения, стрессов, продолжительной болезни и неблагоприятных внешних воздействий концентрация тяжёлых изотопов элементов может превысить их оптимальную концентрацию в

¹ Протиевая вода – от слова «протий», обозначающего наиболее распространенный, самый легкий изотоп водорода, состоящий из одного атома.

ТЕХНОЛОГИИ И ОБОРУДОВАНИЕ

организме и тем самым сыграть отрицательную роль, вызывать различные сбои.

В ГНЦ РФ «Институт медико-биологических проблем» РАН был проведён уникальный эксперимент по изучению изменений изотопного состава биогенных химических элементов в организме человека в условиях длительной изоляции в гермообъекте. Оказалось, что в условиях сильного стресса и неблагоприятных внешних воздействий наш организм в первую очередь избавляется именно от тяжёлых изотопов, в том числе дейтерия и тяжёлого кислорода (180).

Так, например, распределились в моче участников эксперимента изотопы железа, одного из важнейших биогенных элементов: ⁵⁶Fe – 34,23%, ⁵⁷Fe – 36,76%, ⁵⁸Fe – 13,15%. Между тем, природное распределение несколько иное: ⁵⁶Fe – 91,66%, ⁵⁷Fe – 2,19%, ⁵⁸Fe – 0,33%. Таким образом, содержание тяжёлых изотопов железа, выведенных из организма, превышает природное содержание: в 18 раз для ⁵⁷Fe и в 40 раз для ⁵⁸Fe.

Та же закономерность была отмечена и для кальция, магния, меди и кремния. Учёные предположили, что для повышения жизненных сил и мобилизации их на борьбу с неблагоприятными внешними воздействиями нам необходимо очищать свой организм от тяжёлых изотопов биогенных элементов, в том числе и дейтерия, так же, как мы освобождаемся от химических шлаков. Выяснилось, что такое очищение происходит в результате употребления в пищу лёгкой воды, обеднённой дейтерием.

Иммуномодулирующие свойства лёгкой воды научно доказаны. Тот факт, что она обладает ещё и противоопухолевыми свойствами, впервые был обнаружен в 1993 г. венгерским микробиологом Г. Шомлаи. В ходе клинических испытаний, проведённых в 1994–2001 гг. в Венгрии, было показано:

– уровень выживаемости больных, употреблявших лёгкую воду в сочетании с традиционными методами лечения или после них значительно выше, чем у больных, использовавших только химио- или лучевую терапию. По данным Г. Шомлаи, уровень выживаемости больных раком молочной железы 4 стадии, употреблявших в ходе стандартного лечения лёгкую воду, оказался через два года в три раза выше, чем у больных, использовавших только традиционные методы лечения;

– использование лёгкой воды во время или после сеансов химиотерапии позволяет частично или полностью убрать иммунодепрессивный эффект цитостатика, уменьшить или полностью снять побочные неблагоприятные эффекты применения химиопрепаратов.

Исследования лёгкой воды в Московском научно-исследовательском онкологическом институте им. П.А. Герцена

Таблица 1

Наиме- нование минераль- ной воды	рН	Концентрация основных ионов, мг/л										Кон-
		Катионы					Анионы					центра- ция
		Ca ²⁺	Mg ²⁺	Na⁺	K+	Fe ^{2+/3+}	HCO ₃	Cľ	F"	SO ₄ ²⁻	NO ₃	дейтерия, (ppm)
Лангвей	7,3	43	13,5	2,3	4,9	0,02	201,3	4,8	0,18	4,8	<0,1	50–125
Московия	7,2	77,2	24,4	6,3	10,4	<0,001	378	4,7	1,2	10,1	0,1	142
Evian	7,3	80	24,6	5,5	1	0,005	296	3	0,11	11,5	4,3	148
Perrier	5,1	142	3,7	15	0,66	0,015	326	30,5	0,1	76	27	149
VITTEL	7,2	202	36	3,8	2	0,006	402	7,2	0,28	306	6	149
VERA	7,4	33,7	13,1	2,3	0,5	0,001	144	2,1	0	15,3	3,2	148
VICHY	6,3	108	11,4	1240	70,8	0,065	3111	240	8,84	173	3,6	148
Вода выс- шей катего- рии (Сан- ПиН)	6,5– 8,5	25–80	5–50	≤ 20	2–20	≤ 0,3	30- 400	≤ 150	0,6– 1,2	≤ 150	≤ 5	Не регламенти- руется

(in vitro*) и НИИ канцерогенеза Российского онкологического научного центра им. Н.Н. Блохина РАМН (in vivo**) (совместно с ГНЦ РФ «Институт медикобиологических проблем РАН») подтвердили тормозящие эффекты лёгкой воды в процессах размножения опухолевых клеток и при росте опухолей.

Не менее интересными оказались радиопротекторные свойства лёгкой воды, впервые обнаруженные И.Н. Варнавским в экспериментах на Drosophila melanogaster. В более поздней работе радиопротекторное действие лёгкой воды было зарегистрировано при облучении мышей кобальтовой пушкой. Выживаемость животных опытной группы, принимавших лёгкую воду (30 ррт) в течение пятнадцати дней перед облучением, оказалась в 2,5 раза выше, чем в контрольной группе (при дозе облучения 850 рентген). При этом было обнаружено, что у выживших мышей опытной группы количество лейкоцитов и эритроцитов осталось в пределах нормы, в то время как в контрольной группе оно значительно сократилось.

Как оказалось, использование лёгкой воды во время или после сеансов лучевой терапии позволяет улучшить состав крови больных, остановить выпадение волос и снять приступы тошноты после сеансов.

ПРОИЗВОДСТВО ЛЁГКОЙ ВОДЫ. ЭФФЕКТИВНОСТЬ ИСПОЛЬЗОВАНИЯ НАСАДОК «ШЕВРОН»

Так где же взять лёгкую воду, например, для употребления в качестве профилактики заболеваний? Питьевая вода с низким содержанием дейтерия (105 ppm) зарегистрирована и продаётся в США и некоторых странах Европы в качестве профилактического противоопухолевого средства (онкологических заболеваний).

В нашей стране производится лёгкая вода «Лангвей», выпускаемая МТК «Айс-

^{*} In vitro — проведение эксперимента «в пробирке» — вне живого организма.

^{**} In vivo — эксперимент на живом организме.

ТЕХНОЛОГИИ И ОБОРУДОВАНИЕ

Рис 1. Сетчатые насадки «Шеврон». Производственная площадка ООО «Интарекс»

Рис 2. Колонное оборудование, оснащенное сетчатыми насадками серии «Шеврон» (ОАО «Электрогорский институт нефтепереработки»)

берг». Вода «Лангвей» прошла испытания и получила положительные заключения и рекомендации НИИ экологии человека и гигиены окружающей среды им. А.Н. Сысина РАМН, Государственного института кровезаменителей и медицинских препаратов, НИИ физико-химической медицины и других организаций.

В таблице 1 приводятся данные о содержании различных ионов и дейтерия в известных брендах питьевой воды.

Лёгкая вода производится на ректификационных колоннах с насыпной спирально-призматической насадкой. Высокая эффективность этой насадки (до 25 т.т./м) с увеличением диаметра колонн более 50 мм резко снижается. При диаметре колонны 100 мм эффективность составляет уже 10 т.т./м, а при диаметре 150 мм около 6 т.т./м. Существенными недостатками используемых в настоящее время насадок являются также их низкая пропускная способность, высокое гидравлическое сопротивление (3-5 мм Hg/т.т.) при цене до 3000 руб./л. Для производства на подобном оборудовании 6000 л/мес. лёгкой воды (содержание тяжёлой воды D_2O 50 ppm) необходимо 40 колонн. Стоимость только спирально-призматических насадок составит несколько миллионов рублей.

В России существует оборудование, которое позволит в несколько раз снизить стоимость процесса производства лёгкой воды с одновременным повышением качества продукта. Колонны, оснащённые регулярными насадками «Шеврон» (рис. 1) производства ИнТАРекС (ПГ «Безопасные Технологии») (ТУ 11-002-73357951-2015), хорошо масштабируются и позволяют создавать высокоэффективные производства большей

мощности (рис. 2). Так, для получения 6000 л/мес. лёгкой воды (содержание D_2O менее 10 ppm) потребуется всего одна колонна диаметром 300 мм и высотой насадочной части 15 м.

В то же время при производстве лёгкой воды с содержанием D_2O менее 50 ppm такая колонна обеспечит производительность 12000 л/мес. И это при вдвое меньших затратах энергии, чем у 80 колонн диаметром 100 мм со спирально-призматической насадкой. Фактор нагрузки спирально-призматической насадки в 3-5 раз меньше, чем у насадки «Шеврон 10-3». Гидравлическое сопротивление регулярной насадки «Шеврон 10-3» составляет 0,2-0,3 мм Hg/т.т (по сравнению с 3-5 мм Hg/т.т у спирально-призматической), что не только позволяет существенно снизить энергозатраты, но и добиться нового качества лёгкой воды с содержанием D2O менее 10 ррт.

ПРИМЕНЕНИЕ КОЛОННЫХ АППАРАТОВ И НАСАДОК «ШЕВРОН» ДЛЯ УДАЛЕНИЯ РАДИОАКТИВНОГО ТРИТИЯ ИЗ РАДИОАКТИВНЫХ СТОКОВ

Абсорбционные и ректификационные колонные аппараты, выпускаемые ПГ «Безопасные Технологии», хорошо известны в России. Начав с абсорбции формальдегида и добившись максимальной необходимой в данной сфере промышленности кубовой концентрации, ПГ «Безопасные Технологии» расширила ряд предлагаемых колонных аппаратов. Среди новых разработок компании ИнТАРекС появились модели, предназначенные для ректификации нефтепродуктов и других применений.

Сходный с получением лёгкой воды проект уже реализован в ПГ «Безопас-

Рис 3. Установка детритизации жидких стоков по заказу ФГУП «РосРАО»

ные Технологии»: это колонна детритизации (удаления радиоактивного трития, третьего, самого тяжёлого, изотопа водорода) из радиоактивных стоков (рис. 3). Проект состоялся в рамках российского предложения по ликвидации аварии на АЭС «Фукусима». Колонный аппарат был также оборудован насадкой «Шеврон» производства компании ИнТАРекС (ПГ «Безопасные Технологии»).

В языке эскимосов есть слова, описывающие разнообразные виды снега, с которым так тесно связана жизнь северных народов. Так и различные модификации воды, влияющие здоровье всех людей, заслуживают особого внимания человечества. Их необходимо изучать и правильно использовать. Первые шаги предпринимаются в России уже сегодня.